Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Lower Bounds for Matching Vector Codes (1204.1367v2)

Published 5 Apr 2012 in cs.CC, cs.DM, and math.CO

Abstract: A Matching Vector (MV) family modulo $m$ is a pair of ordered lists $U=(u_1,...,u_t)$ and $V=(v_1,...,v_t)$ where $u_i,v_j \in \mathbb{Z}_mn$ with the following inner product pattern: for any $i$, $< u_i,v_i>=0$, and for any $i \ne j$, $< u_i,v_j> \ne 0$. A MV family is called $q$-restricted if inner products $< u_i,v_j>$ take at most $q$ different values. Our interest in MV families stems from their recent application in the construction of sub-exponential locally decodable codes (LDCs). There, $q$-restricted MV families are used to construct LDCs with $q$ queries, and there is special interest in the regime where $q$ is constant. When $m$ is a prime it is known that such constructions yield codes with exponential block length. However, for composite $m$ the behaviour is dramatically different. A recent work by Efremenko STOC 2009 gives the first sub-exponential LDC with constant queries. It is based on a construction of a MV family of super-polynomial size by Grolmusz [Combinatorica 2000] modulo composite $m$. In this work, we prove two lower bounds on the block length of LDCs which are based on black box construction using MV families. When $q$ is constant (or sufficiently small), we prove that such LDCs must have a quadratic block length. When the modulus $m$ is constant (as it is in the construction of Efremenko) we prove a super-polynomial lower bound on the block-length of the LDCs, assuming a well-known conjecture in additive combinatorics, the polynomial Freiman-Ruzsa conjecture over $\mathbb{Z}_m$.

Citations (28)

Summary

We haven't generated a summary for this paper yet.