Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Many Vote Operations Are Needed to Manipulate A Voting System? (1204.1231v3)

Published 5 Apr 2012 in cs.AI and cs.GT

Abstract: In this paper, we propose a framework to study a general class of strategic behavior in voting, which we call vote operations. We prove the following theorem: if we fix the number of alternatives, generate $n$ votes i.i.d. according to a distribution $\pi$, and let $n$ go to infinity, then for any $\epsilon >0$, with probability at least $1-\epsilon$, the minimum number of operations that are needed for the strategic individual to achieve her goal falls into one of the following four categories: (1) 0, (2) $\Theta(\sqrt n)$, (3) $\Theta(n)$, and (4) $\infty$. This theorem holds for any set of vote operations, any individual vote distribution $\pi$, and any integer generalized scoring rule, which includes (but is not limited to) almost all commonly studied voting rules, e.g., approval voting, all positional scoring rules (including Borda, plurality, and veto), plurality with runoff, Bucklin, Copeland, maximin, STV, and ranked pairs. We also show that many well-studied types of strategic behavior fall under our framework, including (but not limited to) constructive/destructive manipulation, bribery, and control by adding/deleting votes, margin of victory, and minimum manipulation coalition size. Therefore, our main theorem naturally applies to these problems.

Citations (13)

Summary

We haven't generated a summary for this paper yet.