Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Framing Human-Robot Task Communication as a POMDP (1204.0280v1)

Published 1 Apr 2012 in cs.RO

Abstract: As general purpose robots become more capable, pre-programming of all tasks at the factory will become less practical. We would like for non-technical human owners to be able to communicate, through interaction with their robot, the details of a new task; we call this interaction "task communication". During task communication the robot must infer the details of the task from unstructured human signals and it must choose actions that facilitate this inference. In this paper we propose the use of a partially observable Markov decision process (POMDP) for representing the task communication problem; with the unobservable task details and unobservable intentions of the human teacher captured in the state, with all signals from the human represented as observations, and with the cost function chosen to penalize uncertainty. We work through an example representation of task communication as a POMDP, and present results from a user experiment on an interactive virtual robot, compared with a human controlled virtual robot, for a task involving a single object movement and binary approval input from the teacher. The results suggest that the proposed POMDP representation produces robots that are robust to teacher error, that can accurately infer task details, and that are perceived to be intelligent.

Citations (3)

Summary

We haven't generated a summary for this paper yet.