Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Markov chains less lazy (1203.6668v3)

Published 29 Mar 2012 in math.CO and cs.DM

Abstract: The mixing time of an ergodic, reversible Markov chain can be bounded in terms of the eigenvalues of the chain: specifically, the second-largest eigenvalue and the smallest eigenvalue. It has become standard to focus only on the second-largest eigenvalue, by making the Markov chain "lazy". (A lazy chain does nothing at each step with probability at least 1/2, and has only nonnegative eigenvalues.) An alternative approach to bounding the smallest eigenvalue was given by Diaconis and Stroock and Diaconis and Saloff-Coste. We give examples to show that using this approach it can be quite easy to obtain a bound on the smallest eigenvalue of a combinatorial Markov chain which is several orders of magnitude below the best-known bound on the second-largest eigenvalue.

Citations (4)

Summary

We haven't generated a summary for this paper yet.