Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos based on Normal Velocities (1203.5914v1)

Published 27 Mar 2012 in q-bio.QM and cs.CV

Abstract: This paper introduces a novel framework for the automated tracking of cells, with a particular focus on the challenging situation of phase contrast microscopic videos. Our framework is based on a topology preserving variational segmentation approach applied to normal velocity components obtained from optical flow computations, which appears to yield robust tracking and automated extraction of cell trajectories. In order to obtain improved trackings of local shape features we discuss an additional correction step based on active contours and the image Laplacian which we optimize for an example class of transformed renal epithelial (MDCK-F) cells. We also test the framework for human melanoma cells and murine neutrophil granulocytes that were seeded on different types of extracellular matrices. The results are validated with manual tracking results.

Citations (25)

Summary

We haven't generated a summary for this paper yet.