Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Role Mining (1203.3744v1)

Published 16 Mar 2012 in cs.CR

Abstract: Role Based Access Control (RBAC) is a very popular access control model, for long time investigated and widely deployed in the security architecture of different enterprises. To implement RBAC, roles have to be firstly identified within the considered organization. Usually the process of (automatically) defining the roles in a bottom up way, starting from the permissions assigned to each user, is called {\it role mining}. In literature, the role mining problem has been formally analyzed and several techniques have been proposed in order to obtain a set of valid roles. Recently, the problem of defining different kind of constraints on the number and the size of the roles included in the resulting role set has been addressed. In this paper we provide a formal definition of the role mining problem under the cardinality constraint, i.e. restricting the maximum number of permissions that can be included in a role. We discuss formally the computational complexity of the problem and propose a novel heuristic. Furthermore we present experimental results obtained after the application of the proposed heuristic on both real and synthetic datasets, and compare the resulting performance to previous proposals

Citations (26)

Summary

We haven't generated a summary for this paper yet.