Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms and Complexity Results for Exact Bayesian Structure Learning (1203.3501v1)

Published 15 Mar 2012 in cs.LG, cs.DS, and stat.ML

Abstract: Bayesian structure learning is the NP-hard problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian structure learning under graph theoretic restrictions on the super-structure. The super-structure (a concept introduced by Perrier, Imoto, and Miyano, JMLR 2008) is an undirected graph that contains as subgraphs the skeletons of solution networks. Our results apply to several variants of score-based Bayesian structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth and in linear time if in addition the super-structure has bounded maximum degree. We complement this with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but we aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).

Citations (16)

Summary

We haven't generated a summary for this paper yet.