Papers
Topics
Authors
Recent
2000 character limit reached

Synchronizing Automata on Quasi Eulerian Digraph

Published 15 Mar 2012 in cs.FL | (1203.3402v1)

Abstract: In 1964 \v{C}ern\'{y} conjectured that each $n$-state synchronizing automaton posesses a reset word of length at most $(n-1)2$. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in $n$. Thus the main problem here is to prove quadratic (in $n$) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.