Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Poisson and multi-Bernoulli filters (1203.2992v1)

Published 14 Mar 2012 in cs.SY and cs.CV

Abstract: The probability hypothesis density (PHD) and multi-target multi-Bernoulli (MeMBer) filters are two leading algorithms that have emerged from random finite sets (RFS). In this paper we study a method which combines these two approaches. Our work is motivated by a sister paper, which proves that the full Bayes RFS filter naturally incorporates a Poisson component representing targets that have never been detected, and a linear combination of multi-Bernoulli components representing targets under track. Here we demonstrate the benefit (in speed of track initiation) that maintenance of a Poisson component of undetected targets provides. Subsequently, we propose a method of recycling, which projects Bernoulli components with a low probability of existence onto the Poisson component (as opposed to deleting them). We show that this allows us to achieve similar tracking performance using a fraction of the number of Bernoulli components (i.e., tracks).

Citations (72)

Summary

We haven't generated a summary for this paper yet.