Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Mixing Time of Markov Chain Monte Carlo for Integer Least-Square Problems (1203.2213v1)

Published 10 Mar 2012 in cs.IT and math.IT

Abstract: In this paper, we study the mixing time of Markov Chain Monte Carlo (MCMC) for integer least-square (LS) optimization problems. It is found that the mixing time of MCMC for integer LS problems depends on the structure of the underlying lattice. More specifically, the mixing time of MCMC is closely related to whether there is a local minimum in the lattice structure. For some lattices, the mixing time of the Markov chain is independent of the signal-to-noise ($SNR$) ratio and grows polynomially in the problem dimension; while for some lattices, the mixing time grows unboundedly as $SNR$ grows. Both theoretical and empirical results suggest that to ensure fast mixing, the temperature for MCMC should often grow positively as the $SNR$ increases. We also derive the probability that there exist local minima in an integer least-square problem, which can be as high as $1/3-\frac{1}{\sqrt{5}}+\frac{2\arctan(\sqrt{5/3})}{\sqrt{5}\pi}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.