Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AD in Fortran, Part 1: Design (1203.1448v2)

Published 7 Mar 2012 in cs.PL, cs.MS, and cs.NA

Abstract: We propose extensions to Fortran which integrate forward and reverse Automatic Differentiation (AD) directly into the programming model. Irrespective of implementation technology, embedding AD constructs directly into the language extends the reach and convenience of AD while allowing abstraction of concepts of interest to scientific-computing practice, such as root finding, optimization, and finding equilibria of continuous games. Multiple different subprograms for these tasks can share common interfaces, regardless of whether and how they use AD internally. A programmer can maximize a function F by calling a library maximizer, XSTAR=ARGMAX(F,X0), which internally constructs derivatives of F by AD, without having to learn how to use any particular AD tool. We illustrate the utility of these extensions by example: programs become much more concise and closer to traditional mathematical notation. A companion paper describes how these extensions can be implemented by a program that generates input to existing Fortran-based AD tools.

Citations (3)

Summary

We haven't generated a summary for this paper yet.