Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Posterior Mean Super-Resolution with a Compound Gaussian Markov Random Field Prior (1203.0781v3)

Published 4 Mar 2012 in cs.CV

Abstract: This manuscript proposes a posterior mean (PM) super-resolution (SR) method with a compound Gaussian Markov random field (MRF) prior. SR is a technique to estimate a spatially high-resolution image from observed multiple low-resolution images. A compound Gaussian MRF model provides a preferable prior for natural images that preserves edges. PM is the optimal estimator for the objective function of peak signal-to-noise ratio (PSNR). This estimator is numerically determined by using variational Bayes (VB). We then solve the conjugate prior problem on VB and the exponential-order calculation cost problem of a compound Gaussian MRF prior with simple Taylor approximations. In experiments, the proposed method roughly overcomes existing methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.