Preserving Terminal Distances using Minors (1202.5675v3)
Abstract: We introduce the following notion of compressing an undirected graph G with edge-lengths and terminal vertices $R\subseteq V(G)$. A distance-preserving minor is a minor G' (of G) with possibly different edge-lengths, such that $R\subseteq V(G')$ and the shortest-path distance between every pair of terminals is exactly the same in G and in G'. What is the smallest f*(k) such that every graph G with k=|R| terminals admits a distance-preserving minor G' with at most f*(k) vertices? Simple analysis shows that $f*(k)\leq O(k4)$. Our main result proves that $f*(k)\geq \Omega(k2)$, significantly improving over the trivial $f*(k)\geq k$. Our lower bound holds even for planar graphs G, in contrast to graphs G of constant treewidth, for which we prove that O(k) vertices suffice.