Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Discriminating Network Motifs in YouTube Spam (1202.5216v1)

Published 23 Feb 2012 in cs.SI

Abstract: Like other social media websites, YouTube is not immune from the attention of spammers. In particular, evidence can be found of attempts to attract users to malicious third-party websites. As this type of spam is often associated with orchestrated campaigns, it has a discernible network signature, based on networks derived from comments posted by users to videos. In this paper, we examine examples of different YouTube spam campaigns of this nature, and use a feature selection process to identify network motifs that are characteristic of the corresponding campaign strategies. We demonstrate how these discriminating motifs can be used as part of a network motif profiling process that tracks the activity of spam user accounts over time, enabling the process to scale to larger networks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.