Papers
Topics
Authors
Recent
Search
2000 character limit reached

Take it or Leave it: Running a Survey when Privacy Comes at a Cost

Published 21 Feb 2012 in cs.GT, cs.CR, and cs.DS | (1202.4741v2)

Abstract: In this paper, we consider the problem of estimating a potentially sensitive (individually stigmatizing) statistic on a population. In our model, individuals are concerned about their privacy, and experience some cost as a function of their privacy loss. Nevertheless, they would be willing to participate in the survey if they were compensated for their privacy cost. These cost functions are not publicly known, however, nor do we make Bayesian assumptions about their form or distribution. Individuals are rational and will misreport their costs for privacy if doing so is in their best interest. Ghosh and Roth recently showed in this setting, when costs for privacy loss may be correlated with private types, if individuals value differential privacy, no individually rational direct revelation mechanism can compute any non-trivial estimate of the population statistic. In this paper, we circumvent this impossibility result by proposing a modified notion of how individuals experience cost as a function of their privacy loss, and by giving a mechanism which does not operate by direct revelation. Instead, our mechanism has the ability to randomly approach individuals from a population and offer them a take-it-or-leave-it offer. This is intended to model the abilities of a surveyor who may stand on a street corner and approach passers-by.

Citations (103)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.