Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Stationary Random Process for Large-Scale Failure and Recovery of Power Distributions (1202.4720v4)

Published 21 Feb 2012 in cs.SY

Abstract: A key objective of the smart grid is to improve reliability of utility services to end users. This requires strengthening resilience of distribution networks that lie at the edge of the grid. However, distribution networks are exposed to external disturbances such as hurricanes and snow storms where electricity service to customers is disrupted repeatedly. External disturbances cause large-scale power failures that are neither well-understood, nor formulated rigorously, nor studied systematically. This work studies resilience of power distribution networks to large-scale disturbances in three aspects. First, a non-stationary random process is derived to characterize an entire life cycle of large-scale failure and recovery. Second, resilience is defined based on the non-stationary random process. Close form analytical expressions are derived under specific large-scale failure scenarios. Third, the non-stationary model and the resilience metric are applied to a real life example of large-scale disruptions due to Hurricane Ike. Real data on large-scale failures from an operational network is used to learn time-varying model parameters and resilience metrics.

Citations (19)

Summary

We haven't generated a summary for this paper yet.