Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delay Asymptotics with Retransmissions and Incremental Redundancy Codes over Erasure Channels (1202.4661v1)

Published 20 Feb 2012 in cs.IT, cs.PF, and math.IT

Abstract: Recent studies have shown that retransmissions can cause heavy-tailed transmission delays even when packet sizes are light-tailed. Moreover, the impact of heavy-tailed delays persists even when packets size are upper bounded. The key question we study in this paper is how the use of coding techniques to transmit information, together with different system configurations, would affect the distribution of delay. To investigate this problem, we model the underlying channel as a Markov modulated binary erasure channel, where transmitted bits are either received successfully or erased. Erasure codes are used to encode information prior to transmission, which ensures that a fixed fraction of the bits in the codeword can lead to successful decoding. We use incremental redundancy codes, where the codeword is divided into codeword trunks and these trunks are transmitted one at a time to provide incremental redundancies to the receiver until the information is recovered. We characterize the distribution of delay under two different scenarios: (I) Decoder uses memory to cache all previously successfully received bits. (II) Decoder does not use memory, where received bits are discarded if the corresponding information cannot be decoded. In both cases, we consider codeword length with infinite and finite support. From a theoretical perspective, our results provide a benchmark to quantify the tradeoff between system complexity and the distribution of delay.

Citations (2)

Summary

We haven't generated a summary for this paper yet.