2000 character limit reached
Variational Algorithms for Marginal MAP (1202.3742v1)
Published 14 Feb 2012 in cs.LG, cs.AI, cs.IT, math.IT, and stat.ML
Abstract: Marginal MAP problems are notoriously difficult tasks for graphical models. We derive a general variational framework for solving marginal MAP problems, in which we apply analogues of the Bethe, tree-reweighted, and mean field approximations. We then derive a "mixed" message passing algorithm and a convergent alternative using CCCP to solve the BP-type approximations. Theoretically, we give conditions under which the decoded solution is a global or local optimum, and obtain novel upper bounds on solutions. Experimentally we demonstrate that our algorithms outperform related approaches. We also show that EM and variational EM comprise a special case of our framework.