A Unifying Framework for Linearly Solvable Control (1202.3715v1)
Abstract: Recent work has led to the development of an elegant theory of Linearly Solvable Markov Decision Processes (LMDPs) and related Path-Integral Control Problems. Traditionally, MDPs have been formulated using stochastic policies and a control cost based on the KL divergence. In this paper, we extend this framework to a more general class of divergences: the Renyi divergences. These are a more general class of divergences parameterized by a continuous parameter that include the KL divergence as a special case. The resulting control problems can be interpreted as solving a risk-sensitive version of the LMDP problem. For a > 0, we get risk-averse behavior (the degree of risk-aversion increases with a) and for a < 0, we get risk-seeking behavior. We recover LMDPs in the limit as a -> 0. This work generalizes the recently developed risk-sensitive path-integral control formalism which can be seen as the continuous-time limit of results obtained in this paper. To the best of our knowledge, this is a general theory of linearly solvable control and includes all previous work as a special case. We also present an alternative interpretation of these results as solving a 2-player (cooperative or competitive) Markov Game. From the linearity follow a number of nice properties including compositionality of control laws and a path-integral representation of the value function. We demonstrate the usefulness of the framework on control problems with noise where different values of lead to qualitatively different control behaviors.