Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types (1202.3496v1)

Published 16 Feb 2012 in cs.LO and cs.PL

Abstract: Type systems certify program properties in a compositional way. From a bigger program one can abstract out a part and certify the properties of the resulting abstract program by just using the type of the part that was abstracted away. Termination and productivity are non-trivial yet desired program properties, and several type systems have been put forward that guarantee termination, compositionally. These type systems are intimately connected to the definition of least and greatest fixed-points by ordinal iteration. While most type systems use conventional iteration, we consider inflationary iteration in this article. We demonstrate how this leads to a more principled type system, with recursion based on well-founded induction. The type system has a prototypical implementation, MiniAgda, and we show in particular how it certifies productivity of corecursive and mixed recursive-corecursive functions.

Citations (32)

Summary

We haven't generated a summary for this paper yet.