Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal error of query sets under the differentially-private matrix mechanism (1202.3399v4)

Published 15 Feb 2012 in cs.DB and cs.CR

Abstract: A common goal of privacy research is to release synthetic data that satisfies a formal privacy guarantee and can be used by an analyst in place of the original data. To achieve reasonable accuracy, a synthetic data set must be tuned to support a specified set of queries accurately, sacrificing fidelity for other queries. This work considers methods for producing synthetic data under differential privacy and investigates what makes a set of queries "easy" or "hard" to answer. We consider answering sets of linear counting queries using the matrix mechanism, a recent differentially-private mechanism that can reduce error by adding complex correlated noise adapted to a specified workload. Our main result is a novel lower bound on the minimum total error required to simultaneously release answers to a set of workload queries. The bound reveals that the hardness of a query workload is related to the spectral properties of the workload when it is represented in matrix form. The bound is most informative for $(\epsilon,\delta)$-differential privacy but also applies to $\epsilon$-differential privacy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chao Li (429 papers)
  2. Gerome Miklau (33 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.