Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Hardness of Welfare Maximization in Combinatorial Auctions with Submodular Valuations

Published 13 Feb 2012 in cs.DS and cs.GT | (1202.2792v1)

Abstract: We present a new type of monotone submodular functions: \emph{multi-peak submodular functions}. Roughly speaking, given a family of sets $\cF$, we construct a monotone submodular function $f$ with a high value $f(S)$ for every set $S \in {\cF}$ (a "peak"), and a low value on every set that does not intersect significantly any set in $\cF$. We use this construction to show that a better than $(1-\frac{1}{2e})$-approximation ($\simeq 0.816$) for welfare maximization in combinatorial auctions with submodular valuations is (1) impossible in the communication model, (2) NP-hard in the computational model where valuations are given explicitly. Establishing a constant approximation hardness for this problem in the communication model was a long-standing open question. The valuations we construct for the hardness result in the computational model depend only on a constant number of items, and hence the result holds even if the players can answer arbitrary queries about their valuation, including demand queries. We also study two other related problems that received some attention recently: max-min allocation (for which we also get hardness of $(1-\frac 1 {2e}+\epsilon)$-approximation, in both models), and combinatorial public projects (for which we prove hardness of $(3/4+\epsilon)$-approximation in the communication model, and hardness of $(1 -\frac 1 e+\epsilon)$-approximation in the computational model, using constant size valuations).

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.