Papers
Topics
Authors
Recent
2000 character limit reached

Symbolic Protocol Analysis for Diffie-Hellman

Published 10 Feb 2012 in cs.CR | (1202.2168v1)

Abstract: We extend symbolic protocol analysis to apply to protocols using Diffie-Hellman operations. Diffie-Hellman operations act on a cyclic group of prime order, together with an exponentiation operator. The exponents form a finite field. This rich algebraic structure has resisted previous symbolic approaches. We work in an algebra defined by the normal forms of a rewriting theory (modulo associativity and commutativity). These normal forms allow us to define our crucial notion of indicator, a vector of integers that summarizes how many times each secret exponent appears in a message. We prove that the adversary can never construct a message with a new indicator in our adversary model. Using this invariant, we prove the main security goals achieved by several different protocols that use Diffie-Hellman operators in subtle ways. We also give a model-theoretic justification of our rewriting theory: the theory proves all equations that are uniformly true as the order of the cyclic group varies.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.