Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The number of Euler tours of a random directed graph (1202.2156v1)

Published 10 Feb 2012 in cs.DM, cs.DS, math.CO, and math.PR

Abstract: In this paper we obtain the expectation and variance of the number of Euler tours of a random Eulerian directed graph with fixed out-degree sequence. We use this to obtain the asymptotic distribution of the number of Euler tours of a random $d$-in/$d$-out graph and prove a concentration result. We are then able to show that a very simple approach for uniform sampling or approximately counting Euler tours yields algorithms running in expected polynomial time for almost every $d$-in/$d$-out graph. We make use of the BEST theorem of de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, which shows that the number of Euler tours of an Eulerian directed graph with out-degree sequence $\mathbf{d}$ is the product of the number of arborescences and the term $\frac{1}{n}[\prod_{v \in V}(d_v-1)!]$. Therefore most of our effort is towards estimating the moments of the number of arborescences of a random graph with fixed out-degree sequence.

Summary

We haven't generated a summary for this paper yet.