Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nash Codes for Noisy Channels (1202.1547v3)

Published 7 Feb 2012 in cs.GT, cs.IT, and math.IT

Abstract: This paper studies the stability of communication protocols that deal with transmission errors. We consider a coordination game between an informed sender and an uninformed decision maker, the receiver, who communicate over a noisy channel. The sender's strategy, called a code, maps states of nature to signals. The receiver's best response is to decode the received channel output as the state with highest expected receiver payoff. Given this decoding, an equilibrium or "Nash code" results if the sender encodes every state as prescribed. We show two theorems that give sufficient conditions for Nash codes. First, a receiver-optimal code defines a Nash code. A second, more surprising observation holds for communication over a binary channel which is used independently a number of times, a basic model of information transmission: Under a minimal "monotonicity" requirement for breaking ties when decoding, which holds generically, EVERY code is a Nash code.

Citations (17)

Summary

We haven't generated a summary for this paper yet.