2000 character limit reached
Congruence Property In Conformal Field Theory
Published 31 Jan 2012 in math.QA, hep-th, math-ph, math.CT, math.MP, and math.RT | (1201.6644v7)
Abstract: The congruence subgroup property is established for the modular representations associated to any modular tensor category. This result is used to prove that the kernel of the representation of the modular group on the conformal blocks of any rational, C_2-cofinite vertex operator algebra is a congruence subgroup. In particular, the q-character of each irreducible module is a modular function on the same congruence subgroup. The Galois symmetry of the modular representations is obtained and the order of the anomaly for those modular categories satisfying some integrality conditions is determined.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.