Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized and Approximation Algorithms for Boxicity (1201.5958v3)

Published 28 Jan 2012 in cs.DS, cs.DM, and math.CO

Abstract: Boxicity of a graph $G(V,$ $E)$, denoted by $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of axis parallel boxes in $\mathbb{R}k$. The problem of computing boxicity is inapproximable even for graph classes like bipartite, co-bipartite and split graphs within $O(n{1 - \epsilon})$-factor, for any $\epsilon >0$ in polynomial time unless $NP=ZPP$. We give FPT approximation algorithms for computing the boxicity of graphs, where the parameter used is the vertex or edge edit distance of the given graph from families of graphs of bounded boxicity. This can be seen as a generalization of the parameterizations discussed in \cite{Adiga2}. Extending the same idea in one of our algorithms, we also get an $O\left(\frac{n\sqrt{\log \log n}}{\sqrt{\log n}}\right)$ factor approximation algorithm for computing boxicity and an $O\left(\frac{n {(\log \log n)}{\frac{3}{2}}}{\sqrt{\log n}}\right)$ factor approximation algorithm for computing the cubicity. These seem to be the first $o(n)$ factor approximation algorithms known for both boxicity and cubicity. As a consequence of this result, a $o(n)$ factor approximation algorithm for computing the partial order dimension of finite posets and a $o(n)$ factor approximation algorithm for computing the threshold dimension of split graphs would follow.

Summary

We haven't generated a summary for this paper yet.