Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Solver Based on Sparse Resultants (1201.5810v1)

Published 27 Jan 2012 in cs.SC, cs.NA, and math.AC

Abstract: Sparse (or toric) elimination exploits the structure of polynomials by measuring their complexity in terms of Newton polytopes instead of total degree. The sparse, or Newton, resultant generalizes the classical homogeneous resultant and its degree is a function of the mixed volumes of the Newton polytopes. We sketch the sparse resultant constructions of Canny and Emiris and show how they reduce the problem of root-finding to an eigenproblem. A novel method for achieving this reduction is presented which does not increase the dimension of the problem. Together with an implementation of the sparse resultant construction, it provides a general solver for polynomial systems. We discuss the overall implementation and illustrate its use by applying it to concrete problems from vision, robotics and structural biology. The high efficiency and accuracy of the solutions suggest that sparse elimination may be the method of choice for systems of moderate size.

Citations (18)

Summary

We haven't generated a summary for this paper yet.