Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative classical realizability (1201.4307v2)

Published 20 Jan 2012 in cs.LO

Abstract: Introduced by Dal Lago and Hofmann, quantitative realizability is a technique used to define models for logics based on Multiplicative Linear Logic. A particularity is that functions are interpreted as bounded time computable functions. It has been used to give new and uniform proofs of soundness of several type systems with respect to certain time complexity classes. We propose a reformulation of their ideas in the setting of Krivine's classical realizability. The framework obtained generalizes Dal Lago and Hofmann's realizability, and reveals deep connections between quantitative realizability and a linear variant of Cohen's forcing.

Citations (8)

Summary

We haven't generated a summary for this paper yet.