Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Puiseux Series for Algebraic Surfaces (1201.3401v2)

Published 17 Jan 2012 in cs.SC, math.AG, and math.NA

Abstract: In this paper we outline an algorithmic approach to compute Puiseux series expansions for algebraic surfaces. The series expansions originate at the intersection of the surface with as many coordinate planes as the dimension of the surface. Our approach starts with a polyhedral method to compute cones of normal vectors to the Newton polytopes of the given polynomial system that defines the surface. If as many vectors in the cone as the dimension of the surface define an initial form system that has isolated solutions, then those vectors are potential tropisms for the initial term of the Puiseux series expansion. Our preliminary methods produce exact representations for solution sets of the cyclic $n$-roots problem, for $n = m2$, corresponding to a result of Backelin.

Citations (25)

Summary

We haven't generated a summary for this paper yet.