Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The minimax risk of truncated series estimators for symmetric convex polytopes (1201.2462v1)

Published 12 Jan 2012 in math.ST, cs.IT, math.IT, math.PR, and stat.TH

Abstract: We study the optimality of the minimax risk of truncated series estimators for symmetric convex polytopes. We show that the optimal truncated series estimator is within $O(\log m)$ factor of the optimal if the polytope is defined by $m$ hyperplanes. This represents the first such bounds towards general convex bodies. In proving our result, we first define a geometric quantity, called the \emph{approximation radius}, for lower bounding the minimax risk. We then derive our bounds by establishing a connection between the approximation radius and the Kolmogorov width, the quantity that provides upper bounds for the truncated series estimator. Besides, our proof contains several ingredients which might be of independent interest: 1. The notion of approximation radius depends on the volume of the body. It is an intuitive notion and is flexible to yield strong minimax lower bounds; 2. The connection between the approximation radius and the Kolmogorov width is a consequence of a novel duality relationship on the Kolmogorov width, developed by utilizing some deep results from convex geometry.

Citations (7)

Summary

We haven't generated a summary for this paper yet.