Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical multiresolution method to overcome the resolution limit in complex networks (1201.2036v2)

Published 10 Jan 2012 in physics.data-an, cs.SI, physics.comp-ph, and physics.soc-ph

Abstract: The analysis of the modular structure of networks is a major challenge in complex networks theory. The validity of the modular structure obtained is essential to confront the problem of the topology-functionality relationship. Recently, several authors have worked on the limit of resolution that different community detection algorithms have, making impossible the detection of natural modules when very different topological scales coexist in the network. Existing multiresolution methods are not the panacea for solving the problem in extreme situations, and also fail. Here, we present a new hierarchical multiresolution scheme that works even when the network decomposition is very close to the resolution limit. The idea is to split the multiresolution method for optimal subgraphs of the network, focusing the analysis on each part independently. We also propose a new algorithm to speed up the computational cost of screening the mesoscale looking for the resolution parameter that best splits every subgraph. The hierarchical algorithm is able to solve a difficult benchmark proposed in [Lancichinetti & Fortunato, 2011], encouraging the further analysis of hierarchical methods based on the modularity quality function.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Clara Granell (16 papers)
  2. Sergio Gómez (59 papers)
  3. Alex Arenas (106 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.