Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Coding Capacity Regions via Entropy Functions (1201.1062v1)

Published 5 Jan 2012 in cs.IT and math.IT

Abstract: In this paper, we use entropy functions to characterise the set of rate-capacity tuples achievable with either zero decoding error, or vanishing decoding error, for general network coding problems. We show that when sources are colocated, the outer bound obtained by Yeung, A First Course in Information Theory, Section 15.5 (2002) is tight and the sets of zero-error achievable and vanishing-error achievable rate-capacity tuples are the same. We also characterise the set of zero-error and vanishing-error achievable rate capacity tuples for network coding problems subject to linear encoding constraints, routing constraints (where some or all nodes can only perform routing) and secrecy constraints. Finally, we show that even for apparently simple networks, design of optimal codes may be difficult. In particular, we prove that for the incremental multicast problem and for the single-source secure network coding problem, characterisation of the achievable set is very hard and linear network codes may not be optimal.

Citations (35)

Summary

We haven't generated a summary for this paper yet.