Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Average-case analysis of perfect sorting by reversals (Journal Version) (1201.0940v1)

Published 4 Jan 2012 in cs.DM, cs.DS, math.CO, and q-bio.QM

Abstract: Perfect sorting by reversals, a problem originating in computational genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity permutation, by a sequence of reversals that do not break any common interval. B\'erard et al. (2007) make use of strong interval trees to describe an algorithm for sorting signed permutations by reversals. Combinatorial properties of this family of trees are essential to the algorithm analysis. Here, we use the expected value of certain tree parameters to prove that the average run-time of the algorithm is at worst, polynomial, and additionally, for sufficiently long permutations, the sorting algorithm runs in polynomial time with probability one. Furthermore, our analysis of the subclass of commuting scenarios yields precise results on the average length of a reversal, and the average number of reversals.

Citations (14)

Summary

We haven't generated a summary for this paper yet.