Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Subset Selection for Matrices and Applications (1201.0127v4)

Published 30 Dec 2011 in cs.DS and cs.NA

Abstract: We study subset selection for matrices defined as follows: given a matrix $\matX \in \R{n \times m}$ ($m > n$) and an oversampling parameter $k$ ($n \le k \le m$), select a subset of $k$ columns from $\matX$ such that the pseudo-inverse of the subsampled matrix has as smallest norm as possible. In this work, we focus on the Frobenius and the spectral matrix norms. We describe several novel (deterministic and randomized) approximation algorithms for this problem with approximation bounds that are optimal up to constant factors. Additionally, we show that the combinatorial problem of finding a low-stretch spanning tree in an undirected graph corresponds to subset selection, and discuss various implications of this reduction.

Citations (97)

Summary

We haven't generated a summary for this paper yet.