Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Character expansion for HOMFLY polynomials. I. Integrability and difference equations (1112.5754v1)

Published 24 Dec 2011 in hep-th and math.QA

Abstract: We suggest to associate with each knot the set of coefficients of its HOMFLY polynomial expansion into the Schur functions. For each braid representation of the knot these coefficients are defined unambiguously as certain combinations of the Racah symbols for the algebra SU_q. Then, the HOMFLY polynomials can be extended to the entire space of time-variables. The so extended HOMFLY polynomials are no longer knot invariants, they depend on the choice of the braid representation, but instead one can naturally discuss their explicit integrable properties. The generating functions of torus knot/link coefficients are turned to satisfy the Plucker relations and can be associated with tau-function of the KP hierarchy, while generic knots correspond to more involved systems. On the other hand, using the expansion into the Schur functions, one can immediately derive difference equations (A-polynomials) for knot polynomials which play a role of the string equation. This adds to the previously demonstrated use of these character decompositions for the study of beta-deformations from HOMFLY to superpolynomials.

Citations (126)

Summary

We haven't generated a summary for this paper yet.