Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sparsity-Aware Adaptive Algorithm for Distributed Learning (1112.5716v1)

Published 24 Dec 2011 in cs.IT and math.IT

Abstract: In this paper, a sparsity-aware adaptive algorithm for distributed learning in diffusion networks is developed. The algorithm follows the set-theoretic estimation rationale. At each time instance and at each node of the network, a closed convex set, known as property set, is constructed based on the received measurements; this defines the region in which the solution is searched for. In this paper, the property sets take the form of hyperslabs. The goal is to find a point that belongs to the intersection of these hyperslabs. To this end, sparsity encouraging variable metric projections onto the hyperslabs have been adopted. Moreover, sparsity is also imposed by employing variable metric projections onto weighted $\ell_1$ balls. A combine adapt cooperation strategy is adopted. Under some mild assumptions, the scheme enjoys monotonicity, asymptotic optimality and strong convergence to a point that lies in the consensus subspace. Finally, numerical examples verify the validity of the proposed scheme, compared to other algorithms, which have been developed in the context of sparse adaptive learning.

Citations (90)

Summary

We haven't generated a summary for this paper yet.