Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Bits of Algebraic Numbers (1112.4295v1)

Published 19 Dec 2011 in cs.CC

Abstract: We initiate the complexity theoretic study of the problem of computing the bits of (real) algebraic numbers. This extends the work of Yap on computing the bits of transcendental numbers like \pi, in Logspace. Our main result is that computing a bit of a fixed real algebraic number is in C=NC1\subseteq Logspace when the bit position has a verbose (unary) representation and in the counting hierarchy when it has a succinct (binary) representation. Our tools are drawn from elementary analysis and numerical analysis, and include the Newton-Raphson method. The proof of our main result is entirely elementary, preferring to use the elementary Liouville's theorem over the much deeper Roth's theorem for algebraic numbers. We leave the possibility of proving non-trivial lower bounds for the problem of computing the bits of an algebraic number given the bit position in binary, as our main open question. In this direction we show very limited progress by proving a lower bound for rationals.

Citations (4)

Summary

We haven't generated a summary for this paper yet.