Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Totally Geodesic Subalgebras of Nilpotent Lie algebras (1112.1288v2)

Published 6 Dec 2011 in math.DG

Abstract: A metric Lie algebra g is a Lie algebra equipped with an inner product. A subalgebra h of a metric Lie algebra g is said to be totally geodesic if the Lie subgroup corresponding to h is a totally geodesic submanifold relative to the left-invariant Riemannian metric defined by the inner product, on the simply connected Lie group associated to g. A nonzero element of g is called a geodesic if it spans a one-dimensional totally geodesic subalgebra. We give a new proof of Kaizer's theorem that every metric Lie algebra possesses a geodesic. For nilpotent Lie algebras, we give several results on the possible dimensions of totally geodesic subalgebras. We give an example of a codimension two totally geodesic subalgebra of the standard filiform nilpotent Lie algebra, equipped with a certain inner product. We prove that no other filiform Lie algebra possesses such a subalgebra. We show that in filiform nilpotent Lie algebras, totally geodesic subalgebras that leave invariant their orthogonal complements have dimension at most half the dimension of the algebra. We give an example of a 6-dimensional filiform nilpotent Lie algebra that has no totally geodesic subalgebra of dimension >2, for any choice of inner product.

Summary

We haven't generated a summary for this paper yet.