Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Approximate Sum of Sorted List (1112.0520v4)

Published 2 Dec 2011 in cs.DS and cs.CC

Abstract: We consider the complexity for computing the approximate sum $a_1+a_2+...+a_n$ of a sorted list of numbers $a_1\le a_2\le ...\le a_n$. We show an algorithm that computes an $(1+\epsilon)$-approximation for the sum of a sorted list of nonnegative numbers in an $O({1\over \epsilon}\min(\log n, {\log ({x_{max}\over x_{min}})})\cdot (\log {1\over \epsilon}+\log\log n))$ time, where $x_{max}$ and $x_{min}$ are the largest and the least positive elements of the input list, respectively. We prove a lower bound $\Omega(\min(\log n,\log ({x_{max}\over x_{min}}))$ time for every O(1)-approximation algorithm for the sum of a sorted list of nonnegative elements. We also show that there is no sublinear time approximation algorithm for the sum of a sorted list that contains at least one negative number.

Summary

We haven't generated a summary for this paper yet.