Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant holomorphic foliations on Kobayashi hyperbolic homogeneous manifolds (1111.7118v5)

Published 30 Nov 2011 in math.CV and math.DS

Abstract: Let $M$ be a Kobayashi hyperbolic homogenous manifold. Let $\mathcal F$ be a holomorphic foliation on $M$ invariant under a transitive group $G$ of biholomorphisms. We prove that the leaves of $\mathcal F$ are the fibers of a holomorphic $G$-equivariant submersion $\pi \colon M \to N$ onto a $G$-homogeneous complex manifold $N$. We also show that if $\mathcal Q$ is an automorphism family of a hyperbolic convex (possibly unbounded) domain $D$ in $\mathbb Cn$, then the fixed point set of $\mathcal Q$ is either empty or a connected complex submanifold of $D$.

Summary

We haven't generated a summary for this paper yet.