Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Probabilities and Expectation Propagation (1111.6832v2)

Published 29 Nov 2011 in stat.ML

Abstract: While Gaussian probability densities are omnipresent in applied mathematics, Gaussian cumulative probabilities are hard to calculate in any but the univariate case. We study the utility of Expectation Propagation (EP) as an approximate integration method for this problem. For rectangular integration regions, the approximation is highly accurate. We also extend the derivations to the more general case of polyhedral integration regions. However, we find that in this polyhedral case, EP's answer, though often accurate, can be almost arbitrarily wrong. We consider these unexpected results empirically and theoretically, both for the problem of Gaussian probabilities and for EP more generally. These results elucidate an interesting and non-obvious feature of EP not yet studied in detail.

Citations (41)

Summary

We haven't generated a summary for this paper yet.