Papers
Topics
Authors
Recent
Search
2000 character limit reached

Resonant dynamics for the quintic non linear Schrödinger equation

Published 29 Nov 2011 in math.AP | (1111.6827v1)

Abstract: We consider the quintic nonlinear Schr\"odinger equation (NLS) on the circle. We prove that there exist solutions corresponding to an initial datum built on four Fourier modes which form a resonant set, which have a non trivial dynamic that involves periodic energy exchanges between the modes initially excited. It is noticeable that this nonlinear phenomena does not depend on the choice of the resonant set. The dynamical result is obtained by calculating a resonant normal form up to order 10 of the Hamiltonian of the quintic NLS and then by isolating an effective term of order 6. Notice that this phenomena can not occur in the cubic NLS case for which the amplitudes of the Fourier modes are almost actions, i.e. they are almost constant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.