Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mean Exit Time and Escape Probability for a Tumor Growth System under Non-Gaussian Noise

Published 28 Nov 2011 in math.DS, physics.bio-ph, and q-bio.OT | (1111.6540v1)

Abstract: Effects of non-Gaussian $\alpha-$stable L\'evy noise on the Gompertz tumor growth model are quantified by considering the mean exit time and escape probability of the cancer cell density from inside a safe or benign domain. The mean exit time and escape probability problems are formulated in a differential-integral equation with a fractional Laplacian operator. Numerical simulations are conducted to evaluate how the mean exit time and escape probability vary or bifurcates when $\alpha$ changes. Some bifurcation phenomena are observed and their impacts are discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.