Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deformations and rigidity of lattices in solvable Lie groups

Published 23 Nov 2011 in math.DG and math.GR | (1111.5589v1)

Abstract: Let $G$ be a simply connected, solvable Lie group and $\Gamma$ a lattice in $G$. The deformation space $\mathcal{D}(\Gamma,G)$ is the orbit space associated to the action of $\Aut(G)$ on the space $\mathcal{X}(\Gamma,G)$ of all lattice embeddings of $\Gamma$ into $G$. Our main result generalises the classical rigidity theorems of Mal'tsev and Sait^o for lattices in nilpotent Lie groups and in solvable Lie groups of real type. We prove that the deformation space of every Zariski-dense lattice $\Gamma$ in $G$ is finite and Hausdorff, provided that the maximal nilpotent normal subgroup of $G$ is connected. This implies that every lattice in a solvable Lie group virtually embeds as a Zariski-dense lattice with finite deformation space. We give examples of solvable Lie groups $G$ which admit Zariski-dense lattices $\Gamma$ such that $\mathcal{D}(\Gamma,G)$ is countably infinite, and also examples where the maximal nilpotent normal subgroup of $G$ is connected and simultaneously $G$ has lattices with uncountable deformation space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.