Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of a stronger version of the AJ conjecture for torus knots (1111.5065v2)

Published 22 Nov 2011 in math.GT and math.QA

Abstract: For a knot $K$ in $S3$, the $sl_2$-colored Jones function $J_K(n)$ is a sequence of Laurent polynomials in the variable $t$, which is known to satisfy non-trivial linear recurrence relations. The operator corresponding to the minimal linear recurrence relation is called the recurrence polynomial of $K$. The AJ conjecture \cite{Ga04} states that when reducing $t=-1$, the recurrence polynomial is essentially equal to the $A$-polynomial of $K$. In this paper we consider a stronger version of the AJ conjecture, proposed by Sikora \cite{Si}, and confirm it for all torus knots.

Summary

We haven't generated a summary for this paper yet.