Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Convergence Rates of a Dirichlet Process Mixture of Multivariate Normals

Published 17 Nov 2011 in math.ST, stat.ME, and stat.TH | (1111.4148v1)

Abstract: It is shown that a simple Dirichlet process mixture of multivariate normals offers Bayesian density estimation with adaptive posterior convergence rates. Toward this, a novel sieve for non-parametric mixture densities is explored, and its rate adaptability to various smoothness classes of densities in arbitrary dimension is demonstrated. This sieve construction is expected to offer a substantial technical advancement in studying Bayesian non-parametric mixture models based on stick-breaking priors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.