Affine Stanley symmetric functions for classical types
Abstract: We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes with symmetric functions. For the even orthogonal groups, we conjecture an approximate model of (co)homology via symmetric functions. In the process, we develop type B and type D non-commutative k-Schur functions as elements of the nilCoxeter algebra that model homology of the affine Grassmannian. Additionally, Pieri rules for multiplication by special Schubert classes in homology are given in both cases. Finally, we present a type-free interpretation of Pieri factors, used in the definition of noncommutative k-Schur functions or affine Stanley symmetric functions for any classical type.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.