Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Landau and Gruss type inequalities for inner product type integral transformers in norm ideals (1111.3112v1)

Published 14 Nov 2011 in math.FA, math.CA, and math.OA

Abstract: For a probability measure $\mu$ and for square integrable fields $(\mathscr{A}t)$ and $(\mathscr{B}_t)$ ($t\in\Omega$) of commuting normal operators we prove Landau type inequality \llu\int\Omega\mathscr{A}tX\mathscr{B}_td\mu(t)- \int\Omega\mathscr{A}t\,d\mu(t)X \int\Omega\mathscr{B}t\,d\mu(t) \rru \le \llu \sqrt{\,\int\Omega|\mathscr{A}t|2\dt-|\int\Omega\mathscr{A}t\dt|2}X \sqrt{\,\int\Omega|\mathscr{B}t|2 \dt-|\int\Omega\mathscr{B}t\dt|2} \rru for all $X\in\mathcalb{B}(\mathcal{H})$ and for all unitarily invariant norms $\lluo\cdot\rruo$. For Schatten $p$-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying $C\le\mathscr{A}_t\le D$ and $E\le\mathscr{B}_t\le F$ for all $t\in\Omega $ and some bounded self-adjoint operators $C,D,E$ and $F$, then for all $X\in\ccu$ we prove Gr\"uss type inequality \llu\int\Omega\mathscr{A}tX\mathscr{B}_t \dt- \int\Omega \mathscr{A}t\,d\mu(t)X \int\Omega\mathscr{B}_t\,d\mu(t) \rru\leq \frac{|D-C|\cdot|F-E|}4\cdot\lluo X\rruo. More general results for arbitrary bounded fields are also given.

Summary

We haven't generated a summary for this paper yet.