Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved lower bound for (1,<=2)-identifying codes in the king grid (1111.2477v1)

Published 10 Nov 2011 in math.CO and cs.DM

Abstract: We call a subset $C$ of vertices of a graph $G$ a $(1,\leq \ell)$-identifying code if for all subsets $X$ of vertices with size at most $\ell$, the sets ${c\in C |\exists u \in X, d(u,c)\leq 1}$ are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a $(1,\leq 2)$-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any $(1,\leq 2)$-identifying code of the king grid has density at least 47/111.

Citations (9)

Summary

We haven't generated a summary for this paper yet.